More essential IXTEX 2¢

Richard Kaye*
12th August 1998

Contents

1 Introduction 1
2 The components of TEX 2
3 What’s new in BTEX 2¢ 3
4 About using fonts 4
5 User-defined commands in KTEX 7
6 Packages 8

1 Introduction

This document is a supplement to Essential BTEX 2: and to Essential Math-
ematical BTgX. The main points covered are:

e an overview of how the components of the TEX system work together;

e the rationale behind IMTEX 2¢, and in what way it differs from the
previous version, ATEX 2.09;

e more information on the use of fonts in KITEX 2¢;

e some ideas and pointers more advanced use of KIEX 2¢, such as the
use of user-defined commands.

As always, you are encouraged to modify this file to experiment with the
ideas here or as your own reference to suit your own use later.

*School of Mathematics and Statistics, The University of Birmingham, Birmingham
B15 2TT, U.K.

2 The components of TEX

Much of this is just background information relating to how TEX and its
various components fit together, and the need for a new version of KIEX.

TEX is a typesetting program which takes your document (which is a
standard text file) and typesets it according to certain built-in rules and
other rules which are automatically read in from other files. Basically, TEX
is a glorified typewriter. When it sees the letter ‘a’, it just goes and typesets
a letter a in the current font.

To do this it reads information about all the fonts you will use from
special files (called ‘TEX font metric’ files, having suffix .tfm) which tell
TEX how large each character is and how much space is normally left between
characters. Using this information, TEX decides what characters should be
put where on the pages, and stores this information in the output (.dvi)
file.

To further control how the output looks, TEX has various other primitive
commands which can be used. You will almost never have to work with these
(although the details can be found in Knuth’s The TgXbook). Fortunately
TEX also has a mechanism to define other commands from old ones (using a
device called macro expansion), and you normally use TEX by first loading
a package of new commands (or macros) and working with those commands
instead.

Packages for TEX are available for typesetting almost any language, and
there are many other packages too, even one to typeset music, called Mu-
sicTEX.

The popularity of TEX is due in part to the popularity of these packages.
The original macro package for TEX is (oddly) called plain TEX, even though
it is much more powerful than the primitive set of commands that are used.
Then, the American Mathematical Society developed another one, AMS-
TEX, and Lesie Lamport developed IATEX. Arising from experience of these
two, AMS-ITEX was developed. No two of these systems are compatible
with each other, although it is almost true that plain TEX is a subset of the
other three. In fact, it is even worse than this, and many dialects of XTEX
are in use, some with and some without the ‘new font selection scheme’,
and even ones with this scheme are set up differently. IATEX itself has the
ability to load new packages (so-called style or .sty files), and hundreds are
available for all sorts of applications. Unfortunately standardization in these
packages seems to be rare, and the situation is rather a mess. The latest
version of INTEX, INTEX 2¢, was developed to sort out the muddle with the
different dialects of WTEX and its various packages, and is discussed more
below.

There are two further components of the TEX system that are worth
mentioning. The first (and most important to the user) is the family of so-
called drivers which convert the .dvi file to a printed output, or at least to

something you can read. By necessity, these drivers are machine dependent,
and you will need a different driver for each type of printer or screen. On the
sun network you will use dvips, which converts the .dvi file to postscript
and prints it normally on a laser printer, and xdvi which views a .dvi file
on an X-terminal. Drivers are also available for most other computers and
output devices.

Roughly what a driver does is read the .dvi file and also information
about the shape of characters in a font (usually from .pk files—this part is
done automatically) and produces a graphic image which can be printed or
viewed.

The other component of the TEX system is called Metafont, and is used
to create the font files from specially written programs. So in principle,
you can design your own characters in your mathematical papers, but of
course in practice this is time-consuming and difficult to get to look good.
But sometimes, if dvips can’t find a font you will find it calling Metafont
automatically to generate it.

TEX was designed for maximum portability between computers and dif-
ferent printers. (That means it is an ideal format to send academic papers
to a colleague by email. But it is often wise to check that your colleague
has similar fonts and macro packages.) A disadvantage is that you cannot
always directly use special features of your computer/printer when working
with TEX and its normal fonts, for example drawing long diagonal lines and
incorporating images is difficult to do with TEX’s normal .tfm, .pk fonts.
There are several ways to work round the problem if you can be sure you
(and your colleagues) only work with one driver (dvips for example) or can
print out postscript files directly.

Finally, the TEX software is extensive, covering typesetting in almost
every language and in almost any application, and just about all of this
software is public domain and/or free. If you need some extra package it
can usually be obtained by ftp from ftp.tex.ac.uk for example.

3 What’s new in BTEX 2¢

IXTEX is not just one package, but also a rather general way of choosing
packages, loading new commands and further packages, and also (if you
should want or need to) designing document styles. Packages and styles
are read in by IMTEX as .sty files. You can write these yourself, or you
can use a .sty file written by someone else (there are literally hundreds
available). Unfortunately this proliferation of styles and packages caused
more confusion, since many were given the same name (or new versions of
a .sty file were written with the same name and different functionality).
IYTEX 2¢ was devised to provide a standard base to all users. It was released
in the summer of 1994 and is widely available, but unfortunately is not

loaded onto every system yet!

The new font selection scheme (nfss) built into IXTEX 2 makes using
special symbol fonts for mathematics, and using postscript fonts (rather
that Knuth’s ‘Computer Modern’ fonts) much easier—provided of course
you use a driver like dvips. If you want to use the additional features
developed for typesetting mathematics by the AMS, or if you want to use
postscript fonts, you are strongly advised to use IXTEX 2¢.

IXTEX 2¢ has a ‘compatibility mode’, and if it sees a line like

\documentstyle[11pt,as,amssymb]{article}

it recognises the document as a BIEX 2.09 document and tries to emulate
IATEX 2.09. (This is usually but not always successful—some documents will
be typeset differently, especially if you try to use an incompatible package.)
On the other hand a true I¥TEX 2¢ document will start with

\documentclass[11pt,adpaper]{article}
\usepackage{amssymb}

say, and the document can then use the new features of WTEX 2¢ (and type-
setting should be quicker as well).

Key to INTEX 2¢ is the idea of a ‘document-class’—what sort of document
it is (an article, a book, or whatever)—and the distinction between this and
a ‘package’. In INTEX 2.09 the distinction was blurred. There are many other
enhancements made ‘behind the scenes’ that make writing classes, packages
and styles easier and enable them to work more reliably and predictably.
This probably is the most important improvement, and is part of the longer-
term design of the next release of WIEX, WITEX 3, which will not have any
obvious new features to the user, but will have a host of new features to the
writer of WITEX packages.

4 About using fonts

The new font selection scheme (nfss) works in a significantly different way
to the old font mechanism in ITEX 2.09 and plain TEX, although in most
cases the difference should be transparent to the user. Occasionally, a more
detailed knowledge than given in ‘Essential ITRX 2¢’ is required.

Every font has: (a) a family name; (b) a series; and (c¢) a shape. Each of
these three attributes can be changed independently. The three main fami-
lies are (1) roman, as here, (2) sans-serif, like this, and (3) typewriter, like
this. The commands for selecting these families are respectively \rmfamily,
\sffamily and \ttfamily. Each font in each family has series, indicating
whether it is bold or medium-weight. The commands for selecting these
series are \bfseries, \mdseries. Finally, the shape of the font is whether
the letters are upright, italic, slanted, or caps-and-small-caps.

Here’s a summary table.

1. Roman family

\upshape \itshape \slshape \scshape
\mdseries | Upright Ttalic Slanted ~ SMALL CAPS
\bfseries | Upright Ttalic Slanted Small Caps
2. Sans serif family
\upshape \itshape \slshape \scshape
\mdseries | Upright Italic Slanted ~ SMALL CAPS
\bfseries | Upright Italic Slanted Small Caps
3. Typewriter family
\upshape \itshape \slshape \scshape
\mdseries | Upright Italzc Slanted SMALL CAPS
\bfseries | Upright Italic Slanted Small Caps

Note that is the current shape is italic, \bfseries would select bold
italic, and if text is currently upright, \bfseries would select upright bold.
Note also that some family /series/shape combinations are not always avail-
able. This shouldn’t create problems as suitable substitutions are made (and
a warning message issued), but if you really want these fonts, it is reasonably
straightforward to get Metafont to make them for you.

These commands are typically used in contexts delimited with braces in
the usual way. If you only want a small amount of text to be changed, you

can use the commands:

e \textrm{Roman family} Roman family;

e \textsf{Sans serif family} Sans serif family;

o \texttt{Typewriter family} Typewriter family;

e \textmd{Medium series} Medium series;
e \textbf{Bold series} Bold series;
e \textup{Upright shapel} Upright shape;
e \textit{Italic shape} [talic shape;

e \textsl{Slanted shapel} Slanted shape;

e \textsc{Small Caps shape} SMALL CAPS SHAPE;

e \emph{Emphasized} Emphasized;

the last of these chooses its shape (‘up’ or ‘it’) depending on context. All of
these commands will insert the appropriate extra space if a slanted shape
butts into an upright one.

To change fonts in maths mode you use the analogous commands

e \mathrm{Roman},

e \mathnormal{Normal},

\mathcal{CALIGRAPHIC},

\mathbf{Bold},

\mathsf{Sans serif},

\mathtt{Typewriter},
e \mathit{Italic}.

\mathbb gives ‘blackboard bold’ when the appropriate AMS symbols
package loaded. The AMS packages also provide cyrillic, gothic and script
letters.

Here’s a test:

Roman Normal CALIGRAPHIC
Bold Sans serif Typewriter
Italic N,Z,R,C AB,C,D

\mathnormal is the usual font for algebraic equations, etc., and the spac-
ing between letters is designed for this. If you want a word typed in italic,
as in Ty, use \mathit. (Compare this with T_{max}, T},4, which looks
pretty horrible.

There’s a subtle but important point about changing fonts, often missed
by beginners (and also people who are not beginners) at IWTEX, which is the
so called italic correction. Typesetters should add a little extra space after
a

slanted letter

if the next letter is upright. If this is not done the text looks too cramped,
as in

slanted letter.

The commands \textit, \textsl, and \emph do this automatically, but
you have to add the correction by hand with the command \/ when you use
any of the other font-changing commands, including \it and \s1.

One final word on fonts: the commands \textrm, \rm and so on are
defined by the document class in terms of the more basic commands dis-
cussed here, so they might not work in the same way if you change from the

article to a publisher’s special document class. So you should probably
use them rather than the basic commands, since that way major stylistic
changes can be made with a single change.

5 User-defined commands in BKTEX

IMTEX always included the factility to add new commands. For example,
you could say

\newcommand{\wake}{baba\-badalgharagh\-takam\-min\-%
arron\-nkonn\-bronn\-tonn\-er\-ronn\-tuonn\-thunn\-%
tro\-varr\-houn\-awnskawn\-too\-hoo\-hoor\-denen\-thur\-nuk}

in a document that makes a lot of use of the hundred-letter word on the
first page of Joyce’s Finnegans Wake, and then you can save yourself a lot
of typing (as well as remembering where all the suitable places to hyphenate
it are) by just saying \wake every time you need this word as in

The fall (\wake!) of a once wallstrait oldparr\ldots

‘The fall (bababadalgharaghtakamminarronnkonnbronntonnerronntuonn-
thunntrovarrhounawnskawntoohoohoordenenthurnuk!) of a once wallstrait
oldparr. ..’

Note the use of the comment character (%) to ensure that INTEX doesn’t
see the end-of-line symbol and therefore doesn’t break up this beautiful word
into three. (Unfortunately, IATEX does have to hyphenate it somewhere
though.) Note also that new commands defined this way still suffer from
the problem that any spaces following them will be ignored.

ETEX commands may take arguments too. For example, in

\newcommand{\1is} [2]{#2_{1},\1dots,#2_{#1}}

we define a command \1is of two arguments (which will replace the #1 and
#2 in the definition. Thus consider \(\mathbf{x} = (\lis{n}{x}) \)
becomes ‘consider x = (z1,...,Zy,).]

TEX 2¢ improves the \newcommand command of IATEX 2.09 by allowing
you to define commands with an optional argument as well.

For example, in

\newcommand{\seq} [2] [n]{#2_{1},\1ldots,#2_{#1}}

we define \seq with two arguments, the first being optional (default value
‘n’). This means

For some \(i \in \{ \seq{t} \} \) we have
\(£(i)=\seq[m]{\alpha} \)

gives ‘For some i € {t1,...,t,} we have f(i) = aq,...,apn’ .

TEX also allows you to define environments, usually variations of ex-
isting ones. So the definition

\newenvironment{qsi}[1]%
{#1 wrote,\begin{quote}\begin{sloppypar}\it}y
{\end{sloppypar}\end{quote}}

Makes the following IATEX source

\begin{qgsi}{Joyce}
The fall (\wake!) of a once wallstrait oldparr\ldots
\end{qgsi}

yield: Joyce wrote,

The fall (bababadalgharaghtakamminarronnkonnbronntonner-
ronntuonnthunntrovarrhounawnskawntoohoohoordenenthurnuk!)
of a once wallstrait oldparr. ..

6 Packages

The best feature of IATEX 2¢ is its ability to load and use packages from
various sources in a smooth, uniform way. Several are bundled with the
new IATEX, including ones to print graphics, and one to vary ‘theorem’ en-
vironments. The AMS packages now work well with I¥TEX and are highly
recommended for tricky mathematical typesetting. For example, if you re-
quire the AMS fonts, you are strongly advised to use IXTEX2¢ with the
appropriate package.

For further information on IATEX 2 and its packages, see ‘IWTEX 2¢ for
authors’ and ‘AMS-TATEX Version 1.2 User’s guide’ which are on fourier and
copies can be made available.

